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Chapter Two

Transient Circuits

2.7 Second-Order Circuits

In the previous part, we considered circuits with a single

storage element (a capacitor or an inductor). Such circuits
are first-order because the differential equations
describing them are first-order. In this part, we will
consider circuits containing two storage elements. These
are known as second-order circuits because their responses
are described by differential equations that contain second

derivatives.

Typical examples of second-order circuits are RLC
circuits, in which the three kinds of passive elements are
present. Examples of such circuits are shown in Fig.
2.27(a) and (b). Other examples are RL and RC circuits,
as shown in Fig. 2.27(c) and (d). It is apparent from Fig.
2.27 that a second-order circuit may have two storage
elements of different type or the same type (provided
elements of the same type cannot be represented by an

equivalent single element).

© o
(a)

TOWTIREE
(b)

“s ;:? Ly ': L, ‘:
(c)

; i‘h — CI (_“3 —
(d)

Fig 2.27 Typical examples of
second-order circuits.

Our analysis of second-order circuits will be similar to that used for first-order. We will first

consider circuits that are excited by the initial conditions of the storage elements. Although these

circuits may contain dependent sources, they are free of independent sources. These source-free

circuits will give natural responses as expected. Later we will consider circuits that are excited

by independent sources.



2.8 The Source Free RLC Series Circuit

Consider the series RLC circuit shown in Fig. 2.28. The circuit is being excited by the energy

initially stored in the capacitor and inductor. The energy is represented by the initial capacitor

voltage 1/, and initial inductor current I, . Thus, att = 0,
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Applying KVL around the loop in Fig. 2.28, Fig 2.28 A source-free series RLC
" | circuit.
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Ri + L—+— | i(r)dr =0 +(2.42)
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To eliminate the ihteEJraI, we differentiate with respect to t and rearrange terms. We get
ﬁ.}ﬁi—L:{} ...(2.43)
dt- L dt LC

Our experience in the preceding chapter on first-order circuits suggests that the solution is of

exponential form. So we let i = A¢™ is the solution of Eq (2.43) so, the above equation will be

2 st ‘j'R .7 SR i st
As“e 7 LY L(_J =)
Or
an R I
p ( RO jz 0 ..(2.44)
‘" T Lc,

Since i = Aest is the assumed solution we are trying to find, only the expression in parentheses

can be zero:
5+ ic: — ]ﬁ =0 ...(2.45)
L LC
The two roots of above Eq. are
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A more compact way of expressing the roots is

.(2.47)
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Where

o = Wy =

R 1
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The roots s, and s, are called natural frequencies, measured in nepers per second (Np/s),
because they are associated with the natural response of the circuit; w, is known as the resonant
frequency or strictly as the undamped natural frequency, expressed in radians per second
(rad/s); and a is the neper frequency or the damping factor, expressed in nepers per second. In

terms of w, and «, Eq. (2.45) can be written as
S+ 2as + w5 =0 ...(2.49)

The two values of s in Eq. (2.46 & 2.247) indicate that there are two possible solutions for i, that

. . 51 . 5o
IS, [ =Ae", I = Aze™

Since Eq. (2.43) is a linear equation, so the natural response of the series RLC circuit is

i(f) = A" + Aye™ ...(2.50)
Where A; & A, are the constants and are determined from the initial values of i(0) & d;(f) :
From Eq. (2.47), we can infer that there are three types of solutions:
1- If & > wy we have the overdamped case. 4 )
. From Egs. (2.41 & 2.42),
2- If & < wy we have the critically damped case.
di(0 1
3- If a = wywe have the underdamped case. ld(t ) =-7 (RIy +Vy)

We will consider each of these cases separately. \_ -/
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A- Overdamped Case (¢ > wg)

. 4L
From Egs. (2.47) and (2.48), « > w implies C > R .

—

When this happens, both roots s; and s, are negative

and real. The response is

i(t) = Ajesit + A,es?t ...(2.51) Fig 2.29 Overdamped response.

which decays and approaches zero as t increases. Figure 2.29 illustrates a typical overdamped
response.
i A

B- Critically Damped Case (a = wy)

L 4L
When a = w, implies C = 22 and s; = 5, =

1
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- = — i for this case the response is

i(6) = (Ast + Ay)e™™ ...(2.52)
iti ; P Fig 2.30 critically d d .
A critically damped response is shown in Fig. 2.30. ' 250 critically damped response

C- Underdamped Case (a < wg)

N 4L _
As a < w,implies C < ok the roots can be written

s1= —a+ V—(wg— )= —a+ juy

-

§=—a— V—(wp —a’) = —a — juy

Where wy = /w(z, — a?, which is called the damping frequency.

i) A

The response in this case will be

i(t) = (B, coswyt + B, sinwyt)e %t ...(2.53)
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Where B1 - Al +A2 & B2 :](Al - Az)
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The response of this case is shown in Fig. 2. 31. Fig 2.31 underdamped response.



Example 2.10:- In Fig. 2.28, R = 40Q,L. = 4 Hand C = 1/4 F Calculate the characteristic roots

of the circuit. Is the natural response overdamped, underdamped, or critically damped?



Example 2.11:- Find i(t) in the circuit of Fig. 2.32. Assume that the circuit has reached steady
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Fig 2.32 For Example 2.11



2.9 The Source Free RLC Parallel Circuit

Parallel RLC circuits find many practical applications, ?
notably in communications networks and filter designs. l ¥ M " l .
Consider the parallel RLC circuit shown in Fig. 2.33. R " v L ?:ﬂfn v C=V,
Assume initial capacitor voltage V, and initial inductor _ _ )
current I, . Thus,att = 0, 1T
[ [© Fig 2.33Asour_ce-fr.ee parallel
i0) =1, =— | wv(t)dt RLC circuit.
LJ, ...(2.54)
v(0) =V,

By applying KCL at the top node gives

v 1 [ dv
— + — (T)dTr + C— =10 ...(2.55
R L_.| T S (2.53)

Taking the derivative with respect to t and dividing by C results in
dv 1dv 1
-+ —+

dt- RC drt LC
We obtain the characteristic equation by replacing the first derivative by s and the second

v=0 ...(2.56)

derivative by s? . By following the same reasoning used in establishing in the previous section,

the characteristic equation is obtained as

P+ —s+-—=0
: RS T e ...(2.57)
The roots of the characteristic equation are
1 1V J—
1:c|_‘- - '}H{'__' - \ ("PR{’_") - L(_" Or 5|.2 = — i \r - — wa‘ ...(2.58)
Where
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“T2RC’ T Vo

...(2.59)



The names of these terms remain the same as in the preceding section, as they play the same role
in the solution. Again, there are three possible solutions depending on the values of a & w,,

which are:-

A- Overdamped Case (¢ > wg)

From Eq. (2.59), @ > w, implies L > 4R?C . When this happens, both roots s, and s, are

negative and real. The response is

v(t) = Ae5tt + Ayeset ...(2.60)

B- Critically Damped Case (a = wy)

When a = w, implies L = 4R?*C , and S1 =S, =—a= —é , Tor this case the response is
v(t) = (At + Ay)e ...(2.61)

C- Underdamped Case (a < wg)

As a < wgimplies L < 4R?C , In this case the roots are complex and may be expressed as

g

s1= —a+ V—(wy—a)=—a+ juy
5 5 , Where w,; = /wﬁ — a?, & the response is
5= —a — V—(wg —a’) = —a — Juy

v(t) = (A; cos w it + A, sin wyt)e™* ...(2.62)

The constants A; and A, in each case can be determined from the initial conditions. We need
v(0) and dv(0)/dt .The first term is known from Eq. (2.54). We find the second term by
combining Egs. (2.54) and (2.55), as

ﬁ dv(0)

LB .IF” + C (:I
dt

Or

dv(0) (Vo + Rl ...(2.63)

dt RC



Example 2.12:- In the parallel circuit in the figure 2.33, find v(t), for v(0) = 5V,i(0) = 0,L =
1H&C = 10mF. Consider threecase R = 1.923 Q,R=50&R = 6.25 ().



Example 2.13:- Find v(t) for t > 0 in the RLC circuit of Fig. 2.34.
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Fig 2.34 For Example 2.13
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2.10 Step Response of a Series RLC Circuit R L

r={j>\/ A AN FRE
As we learned in the preceding chapter, the step response yo e
IS obtained by the sudden application of a dc source. v, (+) C——
k. \: J
Consider the series RLC circuit shown in Fig. 2.35.
Applying KVL around the loop for t > 0, Fig 2.35 Step voltage applied to
1i a series RLC circuit.
LZ +Ri+v= Vi ...(2.63)
dt
Buti = C% , S0 by substituting i in Eqg. (2.63) and rearranging terms , we will have
d’v Rdv N vV Y
d> Ldt LC LC +(2.64)
The solution to above Eqg. has two components: the transient response v, (t) and the steady-state
response v (t) thatis,
v(r) = v,f) + v, (1)
v(f) = A1 + Ae™  (Overdamped) :
Uslf) = v(%) = V|
v,(f) = (A, + AsH)e ™ (Critically damped)
v,(f) = (A cos wyt + A, sinwgt)e ™ (Underdamped)
Thus, the complete solutions for the overdamped, underdamped, and critically damped cases
are:
v(f) = V, + A1e™ + A (Overdamped)
v(t) =V, + (A, + Ashe *"  (Critically damped)
v(f) =V, + (A, cosw,t + Ay sinwyf)e @ (Underdamped)
...(2.65)

The constants A; and A, in each case can be determined from the initial conditions v(0) and
dv(0)/dt .

| = +



Example 2.14:- Find v(t) & i(t) for t > 0 in circuit in the Fig. 2.36. Consider three case R =
5Q,R=40&R=10Q. ROTH v

Fig 2.36 For Example 2.14



2.11 Step Response of a Parallel RLC Circuit l _
!
Consider the parallel RLC circuit shown in Fig. 2.37. We I . +
. . R f/-*-\'u =0 Bz R :: L = O—=— v
want to find i due to a sudden application of a dc current. * -/ T = 2 -
Applying KCL at the top node fort > 0
v i + Cﬂ = . ...(2.66) Fig 2.37 Parallel RLC circuit
R dt with an applied

Butv = LZ—i , S0 by substituting v in Eq. (2.63) and rearranging terms , we get
d 1 di i I

— + - 1 —_
dt= RCdt LC LC

The solution to above Eg. has two components: the transient response i, (t) and the steady-state

...(2.67)

response i, (t) thatis,
i(r) = i,(f) + i,() ...(2.68)

As we proceed in the last section, the response will be

i(y =1+ A" + A,e™  (Overdamped)
i()=1I,+ (A, + AsH)e *'  (Critically damped)

i(f) =1, + (A, cosw,t + A; sinw,t)e “*  (Underdamped)

...(2.69)

The constants A; and A, in each case can be determined from the initial conditions i(0) and
di(0)/dt.



Example 2.15:- Find i(t) & ix(t) for t > 0 in circuit in the Fig. 2.38.
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Fig 2.36 For Example 2.15



